Exam I: MTH 221, Spring 2016

Ayman Badawi

QUESTION 1. (i) Given $A^{-1}=\left[\begin{array}{cccc}2 & 4 & 6 & 9 \\ -2 & -2 & 4 & 1 \\ 0 & -2 & -8 & 11 \\ -2 & -4 & -6 & -7\end{array}\right]$. Then $|2 A|=$
a. 256
b. 32
c. $\frac{1}{8}$
d. 1
(ii) Given $A=\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & -1 & 4\end{array}\right]$. The solution set to the system $A X=\left[\begin{array}{c}10 \\ 0 \\ -6 \\ 6\end{array}\right]$ is
a. ϕ (empty set)
b. $\left\{\left(10+2 x_{4}, 6-4 x_{4},-6+4 x_{4}, x_{4}\right) \mid x_{4} \in R\right\}$
c. $\left\{\left(4+2 x_{4},-4 x_{4},-6+4 x_{4}, x_{4}\right) \mid x_{4} \in R\right\}$
d. $\left\{\left(4+2 x_{4}, 6-4 x_{4},-6+4 x_{4}, x_{4}\right) \mid x_{4} \in R\right\}$
(iii) Given $A=\left[\begin{array}{ccc}a & -3 & 2 \\ b & 1 & 1 \\ c & 0 & -3\end{array}\right]$ such that $|A|=3$, for some fixed numbers a, b, c. Then $(1,2)$-entry of A^{-1} is
a. -3
b. 3
c. $\frac{3 b+c}{3}$
d. $\frac{-3 b-c}{3}$
e. $\frac{-7}{3}$
(iv) Let $A=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 1\end{array}\right]$. Then $A^{-1}=$
a. $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
b. $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
c. $\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
d. $\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
(v) All possible values of a, b, c that make the matrix $A=\left[\begin{array}{ccc}1 & 4 & -6 \\ -1 & a & b \\ -1 & -4 & c\end{array}\right]$ equivalent (row-equivalent) to I_{3} are:
a. $a \neq 0, b \neq 0$, and $c \neq 0$
b. $a \neq 0, c \neq 0$, and b any real number
e. $a \neq-4, c \neq 6$, and b any real number
d. $a=1, c=1$ and $b=0$
e. $a=1, c=1$ and b any real number.
(vi) Let $A=\left[\begin{array}{lll}a & 5 & 7 \\ b & 8 & 6 \\ c & 5 & 5\end{array}\right]$ and $B=\left[\begin{array}{ccc}a+4 & 5 & 7 \\ b & 8 & 6 \\ c & 5 & 5\end{array}\right]$. Given $|A|=30$. Then $|B|=$ (Hint: you may need to use the first row to find $|A|$ and $|B| \ldots$ then stare!)
a. 34
b. 26
c. 30
d. 70
e. 40
(vii) Let A be a 2×3 matrix such that $\left[\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right] A+2 A=\left[\begin{array}{lll}2 & 4 & 0 \\ 4 & 6 & 2\end{array}\right]$. Then $A=$
a. $\left[\begin{array}{ccc}-1 & -1 & -1 \\ 3 & 5 & 1\end{array}\right]$
b. $\left[\begin{array}{lll}3 & 5 & 1 \\ 1 & 1 & 1\end{array}\right]$
c. $\left[\begin{array}{ccc}-2 & -2 & -2 \\ 6 & 10 & 2\end{array}\right]$
d. $\left[\begin{array}{ccc}6 & 10 & 2 \\ 2 & 2 & 2\end{array}\right]$
(viii) Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1\end{array}\right]$. Write $A=L U$, where L is lower triangular and U is upper triangular. Then
a. $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.
b. $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$.
c. $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.
d. $L=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1\end{array}\right]$.
(ix) Let $A=\left[\begin{array}{ccc}\sqrt{2} & 0.45 & 2 \\ -7 & 34 & -6 \\ 23 & 5 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -4 & 0 \\ -4 & 3 & 0 \\ 9 & 0 & -2\end{array}\right]$. Let $D=A B$. Then the third column of D is
a. $\left[\begin{array}{c}30 \\ -26 \\ 12\end{array}\right]$
b. $\left[\begin{array}{c}-26 \\ 30 \\ 12\end{array}\right]$
e. $\left[\begin{array}{c}-4 \\ 12 \\ -6\end{array}\right]$
d. Not wasting my time to do messy calculation
(x) Given $A^{-1}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ a & b & c\end{array}\right]$, where a, b, c are some fixed real numbers. The solution set to the system $A^{T} X=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is
a. $\{(2,3,4)\}$
b. $\{(2,3, a+b)\}$
c. $\{(a+b, 3,2)\}$
d. $\{(a+1, b+2, c+3)\}$
(xi) Given A is a 3×2 matrix and $A \overrightarrow{-3 R_{1}+R_{2} \rightarrow R_{2}} \quad B \quad \overrightarrow{2 R_{2}} \quad D=\left[\begin{array}{cc}1 & 3 \\ -1 & 8 \\ 1 & 4\end{array}\right]$. Let F, W be two elementary matrices such that $F W A=D$. Then
a. $F=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \quad W=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$,
b. $F=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right], \quad W=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
e. $F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right], \quad W=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
d. $F=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \quad W=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
(xii) Given $A=\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1\end{array}\right]$. The solution set to the system $A X=\left[\begin{array}{c}10 \\ 0 \\ -6 \\ 4\end{array}\right]$ is
a. $\{(10,0,-6,4)\}$
b. $\{(-18,10,10,4)\}$
c. $\{(0,2,-2,4)\}$
d. $\{(12,-10,10,4)\}$
(xiii) Given A is a 5×5 matrix such that $A \overrightarrow{2 R_{1}} \quad A_{1} \quad \overrightarrow{R_{2}+R_{3} \rightarrow R_{3}} \quad A_{2} \quad \overrightarrow{R_{4} \leftrightarrow R_{5}} \quad I_{5}$. Then the solution set to the system of linear equations $A X=\left[\begin{array}{c}0.5 \\ -3 \\ 4 \\ -1 \\ 1\end{array}\right]$:
a. $\{(1,1,1,1,1)\}$
b. $\{(1,1,1,-1,1)\}$
d. $\{(1,-3,1,-1,1)\}$
e. $\{(1,-3,1,1,-1)\}$
(xiv) Let A be a 2×2 matrix such that $A \quad \overrightarrow{0.5 R_{1}} \quad A_{1} \overrightarrow{4 R_{2}+R_{1} \rightarrow R_{1}} \quad B$. Let F, W be elementary matrices such that $F W B=A$. Then
a. $W=\left[\begin{array}{cc}0.5 & 0 \\ 0 & 1\end{array}\right]$ and $F=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$
b. $W=\left[\begin{array}{cc}1 & -4 \\ 0 & 1\end{array}\right]$ and $F=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
c. $W=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$ and $F=\left[\begin{array}{cc}0.5 & 0 \\ 0 & 1\end{array}\right]$
d. $W=\left[\begin{array}{cc}1 & 0.25 \\ 0 & 1\end{array}\right]$ and $F=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
e. $W=\left[\begin{array}{cc}1 & -0.25 \\ 0 & 1\end{array}\right]$ and $F=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
(xv) The augmented matrix of a system of linear equations is $\left[\begin{array}{cccc}1 & 7 & -1 & c \\ -1 & c & 1 & -c-10 \\ -2 & -13 & 2 & -c\end{array}\right]$, where c is a real number. For what values of c will the system be consistent?
a. c can be any real number except -7 .
b. c can be any real number except -7 and 0
e. c must be either -2 or -5
d. c can be any real number except 7 .
e. There are no values for c since the system is always inconsistent
(xvi) The augmented matrix of a system of linear equations is $\left[\begin{array}{cccc}1 & 1 & -1 & c \\ -1 & -1 & 2 & 8-c \\ 1 & 1 & 3 & 0\end{array}\right]$. Assume that the system is consistent for a fixed real number c. If $x_{1}=-21$, then the value of x_{2} is
a. -3
b. 21
c. -61
d. There are infinitely many possible values for x_{2}.
(xvii) Let $A=\left[\begin{array}{ccc}1 & a & 0 \\ -1 & 0 & b \\ 0 & -2 a & 4\end{array}\right]$. For what values of a, b will the system $A^{T} X=\left[\begin{array}{c}0.33 \\ 0.75 \\ 12.25\end{array}\right]$ have a unique solution?
a. $a \neq 0$ and $b \neq-4$
b. a any real number and $b \neq-2$
c. a any real number and $b \neq-4$
d. $\quad a \neq 0$ and $b \neq-2$
e. $\quad a \neq 0$ and b any real number

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

